ارزیابی گونههای سنگ مخزن آسماری میدان گچساران با استفاده از روش آنالیز خوشهای به کمک شبکه عصبی مصنوعی نگاشت خود سازمان یافته (SOM)
Authors
Abstract:
شناسایی تغییرات ویژگیهای زمینشناسی و مخزنی در غالب گونههای سنگی از طریق مشخص کردن رخسارههای لاگ و تایید آنها با دادههای مغزه امکانپذیر است. در این مقاله ابتدا سازند آسماری با استفاده از مقاطع نازک مغزه، میکروفاسیسها و فرایندهای دیاژنزی مورد مطالعه قرار گرفت. سپس با استفاده از الگوریتم شبکه عصبی خود سازمان یافته و روش آنالیز خوشهای، دادههای نمودارهای چاهپیمایی متعلق به 5 چاه مغزهگیری شده مخزن آسماری در میدان گچساران خوشهبندی شده و تعداد 5 رخساره لاگ به عنوان مدل رخساره لاگ انتخاب شدند. با بررسی این مدل و مقایسه آن با دادههای مغزه (تخلخل، تراوایی و منحنی فشار موئینه) و پتروگرافی به طور قابل قبولی رخسارههای لاگ تایید شده، و به عنوان گونه سنگی معرفی شدند. باتوجه به نتیجه خوب آن در تفکیک بخشهای مخزنی، این مدل به سایر چاههای فاقد مغزه که فقط دادههای نمودارهای چاه پیمایی آنها در دسترس بود انتشار داده شد و روند تغییرات گونههای سنگ در طول میدان مورد بررسی قرار گرفت.
similar resources
طراحی شبکه عصبی مصنوعی برای پیشبینی تخلخل مخزن آسماری در میدان گچساران با استفاده از دادههای چاه پیمایی و تخلخل مغزه
تعیین تخلخل مخزن، به عنوان یکی از مهم ترین پارامترهای پتروفیزیکی، نقش مهمی در صنایع بالادستی نفت ایفـا مـی نمایـد. یکـی ازروش های نوین مورد استفاده در مدلسازی و تخمین تخلخل، طراحی شبکه های عصبی مصنوعی است که برای پـیش بینـی پارامترهـایپتروفیزیکی به کار می رود. شبکه عصبی مصنوعی، روشی محاسبه ایست که برگرفته از علم زیست شناسی بوده و ابزاری قوی برای حلمشکلات فراروی صنعت نفت محسوب می گردد.در این مطا...
full textپویاسازی خوشه بندی مشتریان با استفاده از روش DEA-DA در بستر شبکه عصبی مصنوعی SOM
چکیدهامروزه ارزیابی مشتریان برای ارائه خدمات مناسب یکی از مهم ترین چالش های مدیران و تصمیم گیرنددگان درسازمانهای مختلف است. در سازمانهای مختلف گاه با توجه به حجم سنگین تقاضای مشتریان پاسخ گدویی بدهنیازهای تمامی آنان امکان پذیر نیست و از سدوی دیگدر ایدن مشدتریان بده عندوان سدرمایه هدای سدازمان ها قلمددادمی شوند. این موضوع هدفمند نمودن مطالعده بدر روی گدرو ه هدای مختلدف مشدتریان در بازارهدای رقدا...
full textطراحی شبکه عصبی مصنوعی برای پیشبینی تخلخل مخزن آسماری در میدان گچساران با استفاده از دادههای چاه پیمایی و تخلخل مغزه
تعیین تخلخل مخزن، به عنوان یکی از مهم ترین پارامترهای پتروفیزیکی، نقش مهمی در صنایع بالادستی نفت ایفـا مـی نمایـد. یکـی ازروش های نوین مورد استفاده در مدلسازی و تخمین تخلخل، طراحی شبکه های عصبی مصنوعی است که برای پـیش بینـی پارامترهـایپتروفیزیکی به کار می رود. شبکه عصبی مصنوعی، روشی محاسبه ایست که برگرفته از علم زیست شناسی بوده و ابزاری قوی برای حلمشکلات فراروی صنعت نفت محسوب می گردد.در این مطا...
full textپیش بینی سقوط بازار سهام با استفاده از شبکه های عصبی نگاشت خود سازمان ده
سقوط بازار پدیدهای است که سبب از دست رفتن ثروت و دارایی سرمایهگذاران در بازۀ زمانی نسبتاً کوتاهی میشود، از این رو تلاش برای پیشبینی آن از اهمیت زیادی برای سرمایهگذاران، سیاستگذاران، نهادهای مالی و دولت برخوردار است. بررسی اجمالی تئوریها و مدلهای ارائهشدۀ پیشبینی سقوط در بازار سهام نشان میدهد میان پژوهشگران دربارۀ الگوهای مشاهدهشدۀ متغیرها، مانند حجم معامله، بازدهها، نوسانپذیری، عوا...
full textانتخاب متغیر در شبکه های عصبی پرسپترون چندلایه به منظور پیش بینی با استفاده از نگاشت های خود سازمان ده (SOM)
full text
برآورد تخلخل از دادههای لرزهای با استفاده از مدلسازی فیزیک سنگ در مخزن آسماری میدان منصوری
هدف نهایی متخصصان ژئوفیزیک مخزن، تعیین خصوصیات مخزنی، نظیر سنگشناسی و تخلخل و شرایط آن، نظیر فشار و نحوه توزیع سیال با استفاده از دادههای لرزهای است. برای دستیابی به این هدف میتوان مدلهای فیزیک سنگ را بر حجم خصوصیات کشسانی بهدست آمده از دادههای لرزهای اعمال کرد. اساس مدلهای فیزیک سنگ، تعیین خصوصیات کشسانی و مخزنی در شرایط یکسان به لحاظ زمینشناسی و با استفاده از آزمایشهای کنترل شده اس...
full textMy Resources
Journal title
volume 26 issue 6-95
pages 4- 15
publication date 2018-02-20
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023